Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A One-Line Correlation for Predicting Oil Vaporization from Liner for IC Engines

2018-04-03
2018-01-0162
The increasingly stringent regulations for fuel economy and emissions require better optimization and control of oil consumption. One of the primary mechanisms of oil consumption is vaporization from the liner; we consider this as the “minimum oil consumption (MOC).” This paper presents a physical-mathematical cycle model for predicting the MOC. The numerical simulations suggest that the MOC is markedly sensitive to oil volatility, liner temperature, engine load and speed but less sensitive to oil film thickness. A one-line correlation is proposed for quick MOC estimations. It is shown to have <15% error compared to the cycle MOC computation. In the “dry region” (between top ring and OCR at the TDC), oil is depleted due to high heat and continual exposure to the combustion chamber.
Technical Paper

Real World Performance of an Onboard Gasoline/Ethanol Separation System to Enable Knock Suppression Using an Octane-On-Demand Fuel System

2018-04-03
2018-01-0879
Higher compression ratio and turbocharging, with engine downsizing can enable significant gains in fuel economy but require engine operating conditions that cause engine knock under high load. Engine knock can be avoided by supplying higher-octane fuel under such high load conditions. This study builds on previous MIT papers investigating Octane-On-Demand (OOD) to enable a higher efficiency, higher-boost higher compression-ratio engine. The high-octane fuel for OOD can be obtained through On-Board-Separation (OBS) of alcohol blended gasoline. Fuel from the primary fuel tank filled with commercially available gasoline that contains 10% by volume ethanol (E10) is separated by an organic membrane pervaporation process that produces a 30 to 90% ethanol fuel blend for use when high octane is needed. In addition to previous work, this paper combines modeling of the OBS system with passenger car and medium-duty truck fuel consumption and octane requirements for various driving cycles.
Technical Paper

Performance Assessment of Extended Stroke Spark Ignition Engine

2018-04-03
2018-01-0893
The performance of an extended stroke spark ignition engine has been assessed by cycle simulation. The base engine is a modern turbo-charged 4-stroke passenger car spark-ignition engine with 10:1 compression ratio. A complex crank mechanism is used so that the intake stroke remains the same while the expansion-to-intake stroke ratio (SR) is varied by changing the crank geometry. The study is limited to the thermodynamic aspect of the extended stroke; the changes in friction, combustion characteristic, and other factors are not included. When the combustion is not knock limited, an efficiency gain of more than 10 percent is obtained for SR = 1.5. At low load, however, there is an efficiency lost due to over-expansion. At the same NIMEP, the extended stroke renders the engine more resistant to knock. At SR of 1.8, the engine is free from knock up to 14 bar NIMEP at 2000 rpm. Under knocking condition, the required spark retard to prevent knocking is less with the extended stroke.
Technical Paper

Dual-Fuel Gasoline-Alcohol Engines for Heavy Duty Trucks: Lower Emissions, Flexible-Fuel Alternative to Diesel Engines

2018-04-03
2018-01-0888
Long-haul and other heavy-duty trucks, presently almost entirely powered by diesel fuel, face challenges meeting worldwide needs for greatly reducing nitrogen oxide (NOx) emissions. Dual-fuel gasoline-alcohol engines could potentially provide a means to cost-effectively meet this need at large scale in the relatively near term. They could also provide reductions in greenhouse gas emissions. These spark ignition (SI) flexible fuel engines can provide operation over a wide fuel range from mainly gasoline use to 100% alcohol use. The alcohol can be ethanol or methanol. Use of stoichiometric operation and a three-way catalytic converter can reduce NOx by around 90% relative to emissions from diesel engines with state of the art exhaust treatment.
Technical Paper

Modeling the Evolution of Fuel and Lubricant Interactions on the Liner in Internal Combustion Engines

2018-04-03
2018-01-0279
In internal combustion engines, a portion of liquid fuel spray may directly land on the liner and mix with oil (lubricant), forming a fuel-oil film (~10μm) that is much thicker than the original oil film (~0.1μm). When the piston retracts in the compression stroke, the fuel-oil mixture may have not been fully vaporized and can be scraped by the top ring into the 1st land crevice and eventually enter the combustion chamber in the format of droplets. Studies have shown that this mechanism is possibly a leading cause for low-speed pre-ignition (LSPI) as the droplets contain oil that has a much lower self-ignition temperature than pure fuel. In this interest, this work aims to study the oil-fuel interactions on the liner during an engine cycle, addressing molecular diffusion (in the liquid film) and vaporization (at the liquid-gas interface) to quantify the amount of fuel and oil that are subject to scraping by the top ring, thereby exploring their implications on LSPI and friction.
Technical Paper

Curved Beam Based Model for Piston-Ring Designs in Internal Combustion Engines: Working Engine Conditions Study

2018-04-03
2018-01-1277
A new multi-scale curved beam based model was developed for piston-ring designs. This tool is able to characterize the behavior of a ring with any cross section design. This paper describes the conformability and ring static twist calculation. The conformability part model the static behavior of the ring in working engine conditions. The model employs the computation scheme that separates the meshing of the structure and local force generation. Additional to the conventional static ring-bore conformability analysis, the conformability model is designed to examine ring-bore and ring-groove interactions in a running engine under varying driving forces and localized lubrication conditions. We made Improvements on the way to handle the effects of the radial temperature gradient compared to the existing models. Examples are given on the effects of ring rotation on the interaction of the ring and a distorted bore as well as the change of local lubrication conditions.
Technical Paper

Continuous Particulate Filter State of Health Monitoring Using Radio Frequency Sensing

2018-04-03
2018-01-1260
Reliable means for on-board detection of particulate filter failures or malfunctions are needed to meet diagnostics (OBD) requirements. Detecting these failures, which result in tailpipe particulate matter (PM) emissions exceeding the OBD limit, over all operating conditions is challenging. Current approaches employ differential pressure sensors and downstream PM sensors, in combination with particulate filter and engine-out soot models. These conventional monitors typically operate over narrowly-defined time windows and do not provide a direct measure of the filter’s state of health. In contrast, radio frequency (RF) sensors, which transmit a wireless signal through the filter substrate provide a direct means for interrogating the condition of the filter itself.
Technical Paper

Developing Design Guidelines for an SCR Assembly Equipped for RF Sensing of NH3 Loading

2018-04-03
2018-01-1266
The Cu-zeolite (CuZ) SCR catalyst enables higher NOx conversion efficiency in part because it can store a significant amount of NH3. “NH3 storage control”, where diesel exhaust fluid (DEF) is dosed in accord with a target NH3 loading, is widely used with CuZ catalysts to achieve very high efficiency. The NH3 loading actually achieved on the catalyst is currently estimated through a stoichiometric calculation. With future high-capacity CuZ catalyst designs, it is likely that the accuracy of this NH3 loading estimate will become limiting for NOx conversion efficiency. Therefore, a direct measurement of NH3 loading is needed; RF sensing enables this. Relative to RF sensing of soot in a DPF (which is in commercial production), RF sensing of NH3 adsorbed on CuZ is more challenging. Therefore, more attention must be paid to the “microwave resonance cavity” created within the SCR assembly. The objective of this study was to develop design guidelines to enable and enhance RF sensing.
Technical Paper

Curved Beam Based Model for Piston-Ring Designs in Internal Combustion Engines: Closed Shape Within a Flexible Band, Free-Shape and Force in Circular Bore Study

2018-04-03
2018-01-1279
A new multi-scale curved beam based model was developed for piston-ring designs. This paper describes the free-shape, force in circular bore and closed shape within a flexible band (ovality) related parts. Knowing any one of these distributions, this model determines the other two. This tool is useful in the sense that the characterization of the ring is carried out by measuring its closed shape within a flexible band which is more accurate than measuring its free shape or force distribution in circular bore. Thus, having a model that takes the closed shape within a flexible band as an input is more convenient and useful based on the experiments carried out to characterize the ring.
Technical Paper

Effects of Ethanol Evaporative Cooling on Particulate Number Emissions in GDI Engines

2018-04-03
2018-01-0360
The spark ignition engine particulate number (PN) emissions have been correlated to a particulate matter index (PMI) in the literature. The PMI value addresses the fuel effect on PN emission through the individual fuel species reactivity and vapor pressure. The latter quantity is used to account for the propensity of the non-volatile fuel components to survive to the later part of the combustion event as wall liquid films, which serve as sources for particulate emission. The PMI, however, does not encompass the suppression of vaporization by the evaporative cooling of fuel components, such as ethanol, that have high latent heat of vaporization. This paper assesses this evaporative cooling effect on PN emissions by measurements in a GDI engine operating with a base gasoline which does not contain oxygenate, with a blend of the gasoline and ethanol, and with a blend of the gasoline, ethanol, and a hydrocarbon additive so that the blend has the same PMI as the original gasoline.
Technical Paper

Structural Designs for Electric Vehicle Battery Pack against Ground Impact

2018-04-03
2018-01-1438
Ground impact caused by road debris can result in very severe fire accident of Electric Vehicles (EV). In order to study the ground impact accidents, a Finite Element model of the battery pack structure is carefully set up according to the practical designs of EVs. Based on this model, the sequence of the deformation process is studied, and the contribution of each component is clarified. Subsequently, four designs, including three enhanced shield plates and one enhanced housing box, are investigated. Results show that the BRAS (Blast Resistant Adaptive Sandwich) shield plate is the most effective structure to decrease the deformation of the battery cells. Compared with the baseline case, which adopts a 6.35-mm-thick aluminum sheet as the shield plate, the BRAS can reduce the shortening of cells by more than 50%. Another type of sandwich structure, the NavTruss, can also improve the safety of battery pack, but not as effectively as the BRAS.
Technical Paper

Investigating the Effect of Intake Manifold Size on the Transient Response of Single Cylinder Turbocharged Engines

2017-09-04
2017-24-0170
This paper evaluates the lag time in a turbocharged single cylinder engine in order to determine its viability in transient applications. The overall goal of this research is to increase the power output, reduce the fuel economy, and improve emissions of single cylinder engines through turbocharging. Due to the timing mismatch between the exhaust stroke, when the turbocharger is powered, and the intake stroke, when the engine intakes air, turbocharging is not conventionally used in commercial single cylinder engines. Our previous work has shown that it is possible to turbocharge a four stroke, single cylinder, internal combustion engine using an air capacitor, a large volume intake manifold in between the turbocharger compressor and engine intake. The air capacitor stores compressed air from the turbocharger during the exhaust stroke and delivers it during the intake stroke.
Journal Article

Assessment of Gasoline Direct Injection Engine Cold Start Particulate Emission Sources

2017-03-28
2017-01-0795
The gasoline direct injection (GDI) engine particulate emission sources are assessed under cold start conditions: the fast idle and speed/load combinations representative of the 1st acceleration in the US FTP. The focus is on the accumulation mode particle number (PN) emission. The sources are non-fuel, combustion of the premixed charge, and liquid fuel film. The non-fuel emissions are measured by operating the engine with premixed methane/air or hydrogen/air. Then the PN level is substantially lower than what is obtained with normal GDI operation; thus non-fuel contribution to PN is small. When operating with stoichiometric premixed gasoline/air, the PN level is comparable to the non-fuel level; thus premixed-stoichiometric mixture combustion does not significantly generate particulates. For fuel rich premixed gasoline/air, PN increases dramatically when lambda is less than 0.7 to 0.8.
Journal Article

Analysis of Ash in Low Mileage, Rapid Aged, and High Mileage Gasoline Exhaust Particle Filters

2017-03-28
2017-01-0930
To meet future particle mass and particle number standards, gasoline vehicles may require particle control, either by way of an exhaust gas filter and/or engine modifications. Soot levels for gasoline engines are much lower than diesel engines; however, non-combustible material (ash) will be collected that can potentially cause increased backpressure, reduced power, and lower fuel economy. The purpose of this work was to examine the ash loading of gasoline particle filters (GPFs) during rapid aging cycles and at real time low mileages, and compare the filter performances to both fresh and very high mileage filters. Current rapid aging cycles for gasoline exhaust systems are designed to degrade the three-way catalyst washcoat both hydrothermally and chemically to represent full useful life catalysts. The ash generated during rapid aging was low in quantity although similar in quality to real time ash. Filters were also examined after a low mileage break-in of approximately 3000 km.
Journal Article

Development and Application of Ring-Pack Model Integrating Global and Local Processes. Part 1: Gas Pressure and Dynamic Behavior of Piston Ring Pack

2017-03-28
2017-01-1043
A new ring pack model has been developed based on the curved beam finite element method. This paper describes the first part of this model: simulating gas pressure in different regions above piston skirt and ring dynamic behavior of two compression rings and a twin-land oil control ring. The model allows separate grid divisions to resolve ring structure dynamics, local force/pressure generation, and gas pressure distribution. Doing so enables the model to capture both global and local processes at their proper length scales. The effects of bore distortion, piston secondary motion, and groove distortion are considered. Gas flows, gas pressure distribution in the ring pack, and ring structural dynamics are coupled with ring-groove and ring-liner interactions, and an implicit scheme is employed to ensure numerical stability. The model is applied to a passenger car engine to demonstrate its ability to predict global and local effects on ring dynamics and oil transport.
Journal Article

Ash Permeability Determination in the Diesel Particulate Filter from Ultra-High Resolution 3D X-Ray Imaging and Image-Based Direct Numerical Simulations

2017-03-28
2017-01-0927
Diesel engine exhaust aftertreatment components, especially the diesel particulate filter (DPF), are subject to various modes of degradation over their lifetimes. One particular adverse effect on the DPF is the significant rise in pressure drop due to the accumulation of engine lubricant-derived ash which coats the inlet channel walls effectively decreasing the permeability of the filter. The decreased permeability due to ash in the DPF can result in increased filter pressure drop and decreased fuel economy. A unique two-step approach, consisting of experimental measurements and direct numerical simulations using ultra-high resolution 3D imaging data, has been utilized in this study to better understand the effects of ash accumulation on engine aftertreatment component functionality.
Technical Paper

Lab Study of Urea Deposit Formation and Chemical Transformation Process of Diesel Aftertreatment System

2017-03-28
2017-01-0915
Diesel exhaust fluid, DEF, (32.5 wt.% urea aqueous solution) is widely used as the NH3 source for selective catalytic reduction (SCR) of NOx in diesel aftertreatment systems. The transformation of sprayed liquid phase DEF droplets to gas phase NH3 is a complex physical and chemical process. Briefly, it experiences water vaporization, urea thermolysis/decomposition and hydrolysis. Depending on the DEF doser, decomposition reaction tube (DRT) design and operating conditions, incomplete decomposition of injected urea could lead to solid urea deposit formation in the diesel aftertreatment system. The formed deposits could lead to engine back pressure increase and DeNOx performance deterioration etc. The formed urea deposits could be further transformed to chemically more stable substances upon exposure to hot exhaust gas, therefore it is critical to understand this transformation process.
Journal Article

Development and Application of Ring-Pack Model Integrating Global and Local Processes. Part 2: Ring-Liner Lubrication

2017-03-28
2017-01-1047
A new ring pack model has been developed based on the curved beam finite element method. This paper describes the second part of this model: simulating oil transport around the ring pack system (two compression rings and one twin-land oil control ring (TLOCR)) through the ring-liner interfaces by solving the oil film thickness on the liner. The ring dynamics model in Part 1 calculates the inter-ring gas pressure and the ring dynamic twist which are used in the ring-liner lubrication model as boundary conditions. Therefore, only in-plane conformability is calculated to obtain the oil film thickness on the liner. Both global process, namely, the structural response of the rings to bore distortion and piston tilt, and local processes, namely, bridging and oil-lube interaction, are considered. The model was applied to a passenger car engine.
Journal Article

Analysis of NOx Emissions during Crank-Start and Cold Fast-Idle in a GDI Engine

2017-03-28
2017-01-0796
The NOx emissions during the crank-start and cold fast-idle phases of a GDI engine are analyzed in detail. The NOx emissions of the first 3 firing cycles are studied under a wide set of parameters including the mass of fuel injected, start of injection, and ignition timing. The results show a strong dependence of the NOx emissions with injection timing; they are significantly reduced as the mixture is stratified. The impact of different valve timings on crank-start NOx emissions was analyzed. Late intake and early exhaust timings show similar potential for NOx reduction; 26-30% lower than the baseline. The combined strategy, resulting in a large symmetric negative valve overlap, shows the greatest reduction; 59% lower than the baseline. The cold fast-idle NOx emissions were studied under different equivalence ratios, injection strategies, combustion phasing, and valve timings. Slightly lean air-fuel mixtures result in a significant reduction of NOx.
Journal Article

Identification of True Stress-Strain Curve of Thermoplastic Polymers under Biaxial Tension

2016-04-05
2016-01-0514
This article is concerned with identification of true stress-strain curve under biaxial tension of thermoplastic polymers. A new type of biaxial tension attachment was embedded first in a universal material test machine, which is able to transform unidirectional loading of the test machine to biaxial loading on the specimen with constant velocity. Cruciform specimen geometry was optimized via FE modeling. Three methods of calculating true stress in biaxial tension tests were compared, based on incompressibility assumption, linear elastic theory and inverse engineering method, respectively. The inverse engineering method is more appropriate for thermoplastic polymers since it considers the practical volume change of the material during biaxial tension deformation. The strategy of data processing was established to obtain biaxial tension true stress-strain curves of different thermoplastic polymers.
X